US009471510B2

a2 United States Patent

Susarla et al.

10) Patent No.: US 9,471,510 B2
45) Date of Patent: Oct. 18, 2016

(54) SYSTEM AND METHOD FOR CACHE
MONITORING IN STORAGE SYSTEMS

(56) References Cited
U.S. PATENT DOCUMENTS

(71) Applicant: NETAPP, INC., Sunnyvale, CA (US) 2007/0050548 AL* 3/2007 Bali ... GOGF 12/0804
. . 711/118
(72) Inventors: Sai Rama Krishna Susarla, Sunnyvale, 2009/0019229 ALl* 1/2009 MOITOW eooevernnn. GO6F 12/0862
CA (US); Girish Kumar B K, 711/137
Sunnyvale, CA (US) 2013/0138889 Al* 5/2013 Chockler GOGF 12/0866
711/129
H . 2013/0166846 Al* 6/2013 Gaur GOGF 12/0897
(73) Assignee: NETAPP, INC., Sunnyvale, CA (US) 112
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 180 days. Primary Examiner — Edward Dudek, Ir.
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP
(21) Appl. No.: 14/136,670
. 57 ABSTRACT
(22) Filed: Dec. 20, 2013 7
A system and method of cache monitoring in storage sys-
(65) Prior Publication Data tems includes storing storage blocks in a cache memory.
US 2015/0178207 Al Jum. 25. 2015 Each of the storage blocks is associated with status indica-
’ tors. As requests are received at the cache memory, the
(51) Int. CL requests are processed and the status indicators associated
GO6F 12/08 (2016.01) with the storage blocks are updated in response to the
GO6F 11/30 (2006.01) processing of the requests. One or more storage blocks are
GO6F 12/12 (2016.01) selected for eviction when a storage block limit is reached.
GOG6F 11/34 (2006.01) As ones of the selected one or more storage blocks are
(52) U.S.CL evicted from the cache memory, the block counters are
CPC GOG6F 12/121 (2013.01); GOGF 11/3037 updated based on the status indicators associated with the
(2013.01); GOGF 11/3466 (2013.01); GO6F evicted storage blocks. Each of the block counters is asso-
12/0862 (2013.01); GO6F 12/0871 (2013.01) ciated with a corresponding combination of the status indi-
(58) Field of Classification Search cators. Caching statistics are periodically updated based on
CPC GO6F 12/0862; GOO6F 12/0871; GO6F the block counters.
11/3037; GOG6F 11/3466
See application file for complete search history. 19 Claims, 4 Drawing Sheets
300
N\
310 320 330 340 -
Written | Prefetch Hit State Description
351 7L] 0 0 0 Fetch Fetched on miss, data never re-read
352 7L - 0 0 1 Hit Fetched on miss, data read at least twice
353 T4 0 1 0 Prefetch Speculatively fetched, data never read
354 71— 0 1 1 PrefetchHit Speculatively fetched, read again at least once
355 1 0 0 WriteOnly Written, never read
356 T 1 0 1 WriteHit Written, read at least once
357 v 1 1 0 PrefetchUpdate | Speculatively fetched, overwritten, never read
358 - 1 1 1 PrefetchUpdateHit | Speculatively fetched, overwritten, read at least once

U.S. Patent Oct. 18, 2016 Sheet 1 of 4 US 9,471,510 B2

100

| Storage
Controller 120

Client 110

Cache 130

Cache

4> M 150
Controller 140 emory

Storage Array 160

Storage
Object 170

FIG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 4 US 9,471,510 B2

200
Ny
210 Receive a storage request
220 Process the storage request
230 Make prefetch requests
240 Evict and/or replace cache blocks
250 Update monitoring metrics

FIG. 2

US 9,471,510 B2

Sheet 3 of 4

Oct. 18, 2016

U.S. Patent

€ O
90UO 1SE3| 1€ peaJ ‘USIIIMIBAO ‘payd1a) Ajlaaire|ndads | HHa1epdnydissald T T 1 1 gg¢
peaJ JSA3U ‘USIIIMIDAO ‘pay21a) AjaAneindads | a1epdnyolsyaud 0 T T —_ /g€
92UO 1Se3)| 18 pead ‘UM HHOMIM T 0 T ——__ 9G¢
pesJ JOASU ‘US1IJIAN AluQ=1umn 0 0 T —_ §G¢
92UO0 1Sed| 1e ulede pead ‘pPayd1a) AjpAIRINDRdS MHY21942.4d T T 0 - yce
peaJ Jandu elep ‘payo1a) Ajaaie|ndads yoiajaud 0 T 0 —__ ¢c¢
92IM] 1SED| 1e peal e1ep ‘ssiw uo pay2ia4 HH 1 0 0 —__ 7S¢
peoJ-aJ J9ABU 1P ‘SSIW U0 payd1a4 yoia4 0 0 0 —_ IS¢
uondudsaq aieis MH Yo1a434d | usnm
ove 0ce oce ()83

N

00€

U.S. Patent Oct. 18, 2016 Sheet 4 of 4 US 9,471,510 B2

250
v
410 — Determine cache space utilization
420 Determine prefetch effectiveness
430 — Determine caching effectiveness
440 Determine backend 1I/O bandwidth
450 Adjust caching system and/or storage system
configuration

FIG. 4

US 9,471,510 B2

1
SYSTEM AND METHOD FOR CACHE
MONITORING IN STORAGE SYSTEMS

TECHNICAL FIELD

The present disclosure relates generally to computing
systems, and more particularly to cache monitoring in stor-
age systems.

BACKGROUND

In a computing environment using distributed or shared
storage, computer storage may be provided to one or more
users or applications using a highly abstracted infrastructure.
This means that the characteristics and locations of the disk
drives, storage arrays, and servers where the actual storage
takes place are typically hidden from the user or application
accessing the storage. The user or application accesses the
distributed storage by referencing its symbolic or virtual
location, and the distributed storage system automatically
translates the virtual location into a physical location where
the requested storage is actually stored and forwards the
storage request to the physical device at that location. This
allows the vendor providing the storage to exercise exten-
sive flexibility in deciding how and where to implement the
storage as the distributed storage system may simply change
how it translates the virtual location requested by the user or
application. This includes the ability to move storage from
one storage device to another to address capacity, workload,
and/or other requirements. These changes in implementation
details are often hidden or transparent from the application
or the user, which access the storage by making storage
requests using an interface, such as an application program-
ming interface (API), and providing the virtual location
information for the requested storage. These virtualized
and/or abstracted features of distributed storage systems
may make them useful in cloud computing systems.

And while distributed storage provides great flexibility to
the storage provider, it often comes with some cost to the
application or user. For example, distributed storage is
typically accessed over a network, such as the Internet. This
may add significant overhead to storage requests as both the
storage request and the response to the storage request may
travel across the network. At a minimum this introduces
latency or delay in the handling of the storage requests. As
the storage system is being used to handle storage requests,
one or more of the components and/or systems between the
client or host where the storage request originates and the
storage device where the storage request is ultimately
handled may introduce unexpected delay and/or introduce a
bottle neck in the handling of the storage requests. For
example, when storage requests are transmitted using a low
bandwidth and/or heavily overloaded network connection,
this may introduce undesirable, but possibly avoidable,
delay in the handling of the request. As another example,
when a storage device, such as a disk drive, in the storage
system receives a large number of storage requests over a
short period of time, the processing of these requests may be
undesirably delayed. Given the complexity of the distributed
storage system, it is not generally a simple task to determine
when, where, and/or why undesirable delays are being
introduced into the handling of storage requests. To begin to
answer this question, each of the various components and/or
systems are typically monitored.

A subsystem often used to reduce the delay in the han-
dling of storage requests is a cache or caching system.
Caching systems are based on the general observation that

10

20

25

30

40

45

50

55

60

65

2

once a storage request is made for a particular storage block,
a follow-up request within that same storage block is more
likely than not to occur in the near future. To take advantage
of'this, a higher speed storage device is installed somewhere
in the processing path between the client or host where the
storage request originates and the storage device where the
storage request is ultimately handled. In some distributed
storage systems there may be multiple caches or caching
systems at different points along the processing path.
Memory in the caching system is used to store data associ-
ated with recent storage requests as one or more cache
blocks so that follow-up requests to the same storage may be
more rapidly handled by accessing the cache blocks, rather
than involving a generally slower read and/or write opera-
tion on a storage device as well as a potentially latency
inducing round trip across the network. As storage requests
are processed they are typically routed through the caching
system. When the caching system receives the storage
request, the memory in the caching system is checked before
forwarding the storage request for further handling.

In some caching systems, the speculative caching of
storage blocks also occurs. Speculative or prefetch caching
is based on the further observation that once a storage
request is made for a particular storage block, a follow-up
request to storage blocks that are after the particular storage
block in the virtualized address space for the same storage
volume is likely to occur in the near future. For example,
when a request is made for the third storage block of a
storage volume, there is generally a high likelihood that a
request to the fourth storage block of the storage volume
may be made in the near future. In some caching systems the
prefetch caching may be accommodated using a resource-
available approach where prefetching occurs when the other
components or subsystems have capacity to handle the
prefetch requests.

Caching systems are typically monitored to determine
how well they are operating. One common caching metric is
hit rate. The hit rate measures the ratio of storage requests
that may be satisfied using the caching system to the total
number of storage requests. In some caching systems the hit
rate may be monitored for individual tenants or users of the
storage system such as particular clients and/or storage
volumes. For many caching systems, the hit rate may be
90% or higher indicating that 90% or more of the storage
requests may be handled without forwarding the storage
request to another storage device. A low hit rate, however,
indicates little more than the hit rate is low and generally
provides no indication as to why it might be low. From the
low hit rate alone it is not possible to determine whether the
hit rate is below because of a poor cache configuration, an
unfortunate sequence of storage requests, and/or contention
among multiple tenants in the use of the caching system.

Caching systems employing prefetching may also moni-
tor their activities. This may include monitoring a number of
storage blocks prefetched and/or a ratio of the number of
storage blocks prefetched relative to the number of storage
requests. Both of these metrics, however, provide little to no
insight on whether the prefetched storage blocks are improv-
ing the hit rate for the caching system or whether they may
be consuming storage system resources without improving
the hit rate.

Accordingly, it would be desirable to provide improved
monitoring of caching systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of an example distributed
storage system according to some embodiments.

US 9,471,510 B2

3

FIG. 2 is a simplified diagram of an example method of
caching system operation according to some embodiments.

FIG. 3 is a simplified diagram of an example chart of
status information that may be included in a cache control
block according to some embodiments.

FIG. 4 is a simplified diagram of an example process of
updating caching metrics according to some embodiments.

In the figures, elements having the same designations
have the same or similar functions.

DETAILED DESCRIPTION

In the following description, specific details are set forth
describing some embodiments consistent with the present
disclosure. It will be apparent, however, to one skilled in the
art that some embodiments may be practiced without some
or all of these specific details. The specific embodiments
disclosed herein are meant to be illustrative but not limiting.
One skilled in the art may realize other elements that,
although not specifically described here, are within the
scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and
described in association with one embodiment may be
incorporated into other embodiments unless specifically
described otherwise or if the one or more features would
make an embodiment non-functional.

Caching systems typically provide an important function
in distributed storage systems. By placing one or more
caching systems along the processing path used to handle
storage requests, it is often possible to improve the respon-
siveness of the storage system to storage requests. This is
effective because when the caching system satisfies the
storage request the overall processing time for the storage
request may be significantly reduced. For example, when a
read request is made and the data requested is already stored
in the caching system, the data may be supplied from the
caching system rather than sending the read request to a
potentially distant disk drive and then wait for the compara-
tively slower disk drive to read the data from the disk drive.
When the storage request is satisfied using the caching
system this is called a cache hit. When the storage request is
not satisfied using the caching system this is called a cache
miss. Well-designed caching systems may often have cache
hits on over 90% of their storage requests.

The caching system obtains the high hit rate by keeping
copies of data associated with previous storage requests and
in some cases may prefetch data immediately after data
requested in the previous storage requests. For example,
when an application is reading data from a file and requests
a first part of the file, it is also likely that the application may
subsequently read from the first part of the file as well as
from a second part of the file that follows the first part of the
file. One way of measuring the effectiveness of a caching
system is to look at the hit rate for the caching system with
the general understanding that a low hit rate suggests that the
caching system is not being as effective as it could be in
improving the performance of the storage system. Unfortu-
nately, by itself, the hit rate does not tell anything more
about why it is low or suggest how the caching system might
be adjusted to increase the hit rate to a more desirable level.
Similarly, measuring the number of prefetches or the ratio of
the number of prefetches to the number of total storage
requests do not indicate whether the prefetching is being
effective or not. Caching systems, especially those in dis-
tributed storage systems, often provide caching for more
than one tenant or purpose. For example, the same caching
system may cache data for multiple applications requesting

10

15

20

25

30

35

40

45

50

55

60

65

4

data or on behalf of multiple storage devices or volumes
whose data is being cached. The hit rate and the prefetch
measures do not provide a convenient way of telling whether
the caching system is more effective for some tenants and
less effective for other tenants.

Various embodiments provide useful measures of the
effectiveness of a caching system, which in some instances
may be implemented without significantly burdening the
caching system. This involves collecting additional data
about the caching system as it operates as well as dividing
the data among the various tenants using the caching system.

As one example, knowing information about how much
of the storage in the caching system is being used by each
of the tenants may be helpful in determining whether the
caching system is seeing balanced usage among the tenants
or whether there is an imbalance between the tenants. This
may provide insight on whether the responsiveness of the
storage system may be increased by changing the distribu-
tion of storage system resources.

As another example, the effectiveness of the caching
system may evaluated by keeping track of how each of the
blocks of data in the caching system is being used. Blocks
may be placed in a caching system in one of three ways.
First, a block may be added to the caching system following
a read request that results in a cache miss. The data read from
the storage system following the cache miss is stored in the
caching system. Second, a block may be added during a
write request where the written data is stored in the caching
system before being written the rest of the storage system.
Third, a block may be added as part of a speculative or
prefetch read following a previous read request that resulted
in a cache miss or a write request. The blocks typically
remain in the caching system until evicted or removed as a
result of a later read request with a cache miss, a write
request, or a prefetch read. This is because the caching
system has a limited storage capacity, due to the generally
higher cost of the faster storage used therein, and may
generally keep blocks that are recently used and evict blocks
that have not been used recently.

A suitable time for evaluating whether the caching system
is effective is when a block is evicted from the caching
system. This may be done by keeping track of three items for
each block: whether the block was ever the subject of a write
request, whether the block was prefetched, and whether the
block was ever the subject of a read request after being
added. These three items may be stored with the rest of the
data identifying the block and may be quickly updated when
the block is added to the caching system and each time the
block is accessed while it is cached. When the block is
evicted, the three items may be checked and used to incre-
ment a corresponding counter. By periodically comparing
the various count values over a known time period, it is
possible to obtain useful information about the usage of each
block. This may be used to evaluate whether prefetching is
helpful, how write requests are managed, and/or the like.
Further, if an identifier associated with the tenant for the
block is also recorded, the counts may be kept separately for
each tenant and be used to suggest whether different tenants
would benefit from having their storage requests cached
differently. The tenant identifier may be further used to
determine how many blocks are being cached for each of the
tenants during each time period.

FIG. 1 is a simplified diagram of an example distributed
storage system 100 according to some embodiments. As
shown in FIG. 1, storage requests originate from one or more
clients 110. The clients 110 may include one or more
applications and/or software packages that make storage

US 9,471,510 B2

5

requests. These clients 110 may include user applications,
service applications, maintenance applications, operating
system services, and/or the like. As each of the clients 110
makes storage requests it typically does so through a storage
API, remote procedure call, a web services call, etc. that
provides access to a driver stack. The storage API and driver
stack provides the clients 110 with access to storage, wher-
ever it may be located in a storage system, using an interface
that abstracts the details regarding the location and the
devices that implement the storage. In many cases, the
storage requested is identified by a storage unit identifier,
such as a logical unit number (LUN), and a virtual address,
such as a block number, that are included in each storage
request made by the clients 110. The clients 110 may each
be located in one or more computers, hosts, servers, virtual
machines, and/or other computing devices that may share
and/or access their own storage API and driver stack.

Each of the storage APIs and driver stacks may use
cabling or one or more networks to access a storage con-
troller 120. Storage controller 120 may receive storage
requests originated by the clients 110 and forward those
storage requests to one or more storage devices that are
associated with the storage unit identifier included in the
respective storage request. Storage controller 120 may be
located in its own computing device/server or may be
included in the same computing device hosting one or more
of the clients 110. Storage controller 120 may also be
operated out of a cluster of computing devices.

As the storage requests are being forwarded to the storage
devices, they may be passed through a caching system 130.
Caching system 130 includes a cache controller 140 coupled
to memory 150. Operation of caching system 130 is man-
aged by the cache controller 140 which may include one or
more processors. The one or more processors may each be
central processing units, multi-core processors, micropro-
cessors, microcontroller, field programmable gate arrays
(FPGAs), application specific integrated circuits (ASICs),
and/or the like. Cache controller 140 may be implemented
using software or a combination of hardware and software.
For example, caching system 130 may be implemented as a
stand-alone subsystem and/or board added to a computing
device. The computing device may be a stand-alone com-
puting device, part of a cluster, or a virtual machine.

Memory 150 may be used to store software executed by
the cache controller, one or more data structures used during
operation of caching system 130, as well as data blocks
being cached by caching system 130. In some examples, the
data structures may include a collection of cache control
blocks (CCBs) used to keep track of the data blocks being
cached by caching system 130. In some cases, different types
or areas of memory 150 may be used for each of the separate
items being stored therein. Memory 150 may include one or
more types of machine readable media. Some common
forms of machine readable media may include floppy disk,
flexible disk, hard disk, magnetic tape, any other magnetic
medium, CD-ROM, any other optical medium, punch cards,
paper tape, any other physical medium with patterns of
holes, RAM, PROM, EPROM, FLASH-EPROM, any other
memory chip or cartridge, and/or any other medium from
which a processor or computer is adapted to read.

When a storage request is received by caching system
130, it is processed by cache controller 140. Cache control-
ler 140 examines the storage request, determines whether a
cache hit or cache miss occurs, updates appropriate status
information on caching operations, decides when and which
cached blocks to evict, and periodically uses the status
information to determine various monitoring metrics for

10

15

20

25

30

35

40

45

50

55

60

65

6

caching system 130. The monitoring metrics may be used to
adjust the configuration of caching system 130 or commu-
nicated to a user, an operator, and/or another controller.

Cache controller 140 may also forward the storage request
to a storage array 160 when a cache miss occurs. Storage
array 160 may be coupled to caching system 130 using
cabling, one or more connectors, and/or one or more net-
works. For example, storage array 160 may be coupled to
caching system 130 using small computer system interface
(SCSI) cabling or through the one or more networks using
the internet SCSI (iSCSI) protocol. Storage array 160 may
also include one or more storage objects 170. Depending
upon how storage array 160 is designed, the storage objects
170 may represent physical storage devices, such as disk
drives, or virtualized storage volumes identified by storage
unit identifiers like a LUN. Cache controller 140 may also
forward other storage requests to storage array 160, such as
during prefetch operations or write back operations when a
cached block is evicted.

The scope of embodiments is not limited to the structure
and arrangement shown in FIG. 1. According to certain
embodiments, caching system 130 may be located at differ-
ent locations in storage system 100. In some examples,
caching system 130 may be included in storage controller
120. In some examples, caching system 130 may be a
host-side caching system that is located in the same com-
puting device hosting one of the clients 110. In some
examples, storage system 100 may include multiple storage
controllers in a hierarchy of storage controllers with caching
systems being located at one or more of the tiers of the
storage controller hierarchy. In some examples, storage
system 100 may include multiple caching systems, such as
a host-side caching system for each of the clients as well as
a caching system for each of the storage controllers.

FIG. 2 is a simplified diagram of an example method 200
of caching system operation according to some embodi-
ments. One or more of the processes 210-250 of method 200
may be implemented, at least in part, in the form of
executable code stored on non-transient, tangible, machine
readable media that when run by one or more processors
(e.g., the one or more processors in cache controller 140)
may cause the one or more processors to perform one or
more of the processes 210-250. For example, method 200
may be implemented by cache controller 140 on behalf of
caching system 130.

At a process 210, a storage request is received. During the
processing of most storage requests by a storage system, the
storage requests are passed to a caching system, where they
are received by the caching system. As each storage request
is received it is typically passed to a cache controller where
it is examined and further processed by the cache controller.
The storage request may be received by the caching system
as part of one or more messages.

At a process 220, the storage request is processed. Once
the storage request is received during process 210 it is
typically examined by the cache controller to determine one
or more characteristics of the storage request. For example,
the characteristics may include a logical address (e.g., a
block number) for the storage associated with the storage
request, an identifier for the client making the storage
request, a storage unit identifier (e.g., a LUN) for the storage
volume being requested, and/or the like. The storage request
is also examined to determine whether it is a read request or
a write request.

When the storage request is a read request, the cache
controller uses the storage unit identifier and the logical
address to determine whether the requested data is already

US 9,471,510 B2

7

stored in the memory of the caching system (i.e., whether a
cache hit occurs). When a cache hit occurs, the cache
controller accesses the one or more blocks in the memory
containing the requested data and returns the requested data
as part of a response to the read request. The cache controller
may also make one or more updates to a CCB maintained for
each of the blocks. The updates may include recording
information associated with the time of the read request
and/or noting that the block has been read as part of a cache
hit. The time information may be used by the cache con-
troller to support the eviction process that is described in
further detail below. When a cache miss occurs, the cache
controller forwards the read request to a corresponding
storage array based on the storage unit identifier. When the
results of the read operation are received back from the
storage array, one or more blocks are allocated in the
memory, the fetched data is stored in the blocks, and a CCB
is created for each of the fetched blocks. Each CCB includes
at least the corresponding storage unit identifier and block
number from the read request. The CCB may further include
information associated with the time of the read request
and/or the client identifier.

When the storage request is a write request, the cache
controller uses the storage unit identifier and the logical
address to determine whether the blocks corresponding to
the data to be written are already stored in the memory of the
caching system. When a corresponding block is already
stored in the caching system, the block is updated with the
data in the write request. When a corresponding block is not
already stored in the caching system, a block is allocated in
the memory, the data in the write request is written to the
block, and a CCB is created with the CCB including at least
the corresponding storage unit identifier and block number
from the write request. The cache controller may also make
one or more updates to the CCB maintained for each of the
blocks. The updates may include recording information
associated with the time of the write request and/or noting
that the block has been written to. The time information may
be used by the cache controller to support the eviction
process that is described in further detail below. Further,
when the caching system is using a write through style of
operation, the write request is also forwarded to the storage
array so that the data in the write request may also be stored
in the storage array.

At a process 230, one or more prefetch requests may be
made. When the caching system supports speculative fetch-
ing of storage blocks, the cache controller may also make
one or more additional read requests to the storage array
based on the storage unit identifier and the block number
from the storage request received during process 210. For
example, when the storage request includes a read request
for block n and the caching system support prefetching of m
blocks, the cache controller may make read requests for
blocks n+1, n+2, . . ., n+m from the storage array for each
of those blocks that isn’t already cached. As each of those
blocks are received back from the storage array, a block is
allocated in the memory, a CCB is created, and the block is
stored in the memory. The cache controller may also make
one or more updates to the CCB maintained for each of the
blocks. The updates may include recording information
associated with the time of the prefetch request and/or
noting that the block has been cached due to a prefetch
request.

At a process 240, one or more cache blocks are evicted
and/or replaced. The memory in the caching system for
storing blocks is finite in size, meaning that only a certain
number of blocks may be cached at one time. After the

35

40

45

50

8

memory fills and a predetermined cache block limit is
reached, the caching system eventually begins evicting or
removing blocks so that they may be replaced by blocks
from more recent storage requests. Many caching systems
use a least recently used (LRU) or related algorithm to select
the blocks that are to be evicted. This is where the timing
information recorded during processes 220 and/or 230 is
used to select a next block to evict. Before a block is evicted,
the CCB may be checked to determine whether the block has
been previously written to without also performing a write
through operation to store the data in the storage array. When
the block has been written, but not written through to the
storage array, the block is written back to the storage array
before it is evicted. The storage unit identifier and logical
address in the CCB for the block are used to determine
where the block is written back to.

After the block is evicted, the cache controller increments
one or more eviction or block counters that are used to track
the eviction state of the block at the time of eviction based
on the updates made to the CCB during processes 220 and/or
230. In some embodiments, separate eviction counters for
each eviction state may be maintained for each tenant of the
caching system. In some examples, the respective eviction
counters for each tenant may be determined based on the
storage unit identifier included in the respective CCB. In
some examples, the respective counters for each tenant may
be determined based on the client identifier included in the
respective CCB. In some cases, respective counters may be
kept for each storage unit identifier and/or each client
identifier. Use of separate eviction counters for each tenant
allows the caching system to monitor whether some tenants
are being better served by the caching system than others. In
some embodiments, an aggregate eviction counter across the
entire caching system may be maintained for each eviction
state.

FIG. 3 is a simplified diagram of an example chart 300 of
status information that may be included in a cache control
block according to some embodiments. As shown in FIG. 3,
chart 300 lists three status values, state variables, or status
indicators that are included in a CCB and may be used to
track how a block associated with the CCB has been
accessed in the caching system. The three status values
include whether the block has been written to (written status
value 310), whether the block was cached as a result of a
prefetch (prefetch status value 320), and whether the block
has been read at least once after being cached (hit status
value 330). The written status value 310 is set whenever a
write request is handled during process 220. The prefetch
status value 320 is set whenever a block is cached as part of
prefetch operation during process 230. And, the hit status
value 330 is set whenever a block is accessed as a result of
a cache hit during process 220. Combined, the written status
value 310, the prefetch status value 320, and the hit status
value 330 provide one of eight possible eviction states 340
of the corresponding block. In some embodiments, it may
also be desirable to replace the written status value 310
and/or the hit status value 330 with corresponding counters
to more robustly track the number of times a cached block
has been written to and/or read from. In some examples, the
corresponding counter may have maximum count values so
that the first number of writes and/or reads are counted.

A Fetch state 351 corresponds to a block that was cached
as a result of a cache miss and has not been written to or
subsequently read as a result of a cache hit. A block with
Fetch state 351 indicates a block that has been cached, but
has provided no benefit as a result of being cached.

US 9,471,510 B2

9

A Hit state 352 corresponds to a block that was cached as
aresult of a cache miss, has not been written to, and has been
subsequently read as a result of a cache hit. A block with Hit
state 352 indicates a block that has been cached and has
provided a benefit to responsiveness by supporting at least
one subsequent cache hit.

A Prefetch state 353 corresponds to a block that was
cached as a result of a prefetch operation and has not been
written to or subsequently read as a result of a cache hit. A
block with Prefetch state 353 indicates a block that has been
speculatively cached, but has provided no benefit as a result
of being cached. In general, a block with Prefetch state 353
indicates a wasted storage operation as the prefetched block
was not used to satisfy any storage request received by the
caching system.

A PrefetchHit state 354 corresponds to a block that was
cached as a result of a prefetch operation, has not been
written to, and has been subsequently read as a result of a
cache hit. A block with PrefetchHit state 354 indicates a
block that has been speculatively cached and provided
benefit as a result of having been read later. In most cases the
prefetch operation used to cache the block allows the
subsequent read request for the block to proceed more
quickly than it would have had the block been cached as a
result of a cache miss. In general, a block with PrefetchHit
state 354 indicates a successful prefetch operation.

A WriteOnly state 355 corresponds to a block that was
cached as a result of a write operation, but has not been
subsequently read as a result of a cache hit. A block with
WriteOnly status 355 indicates a block that did not benefit
from having been cached except for any possible perfor-
mance gain that may result from being able to complete the
write request more quickly in the caching system without
first waiting for the write operation to be forwarded to the
storage array.

A WriteHit state 356 corresponds to a block that has been
written to and has been subsequently read as a result of a
cache hit. A block with WriteHit state 356 indicates either a
block that was cached during a write request and subse-
quently provided benefit during a subsequent read request or
a block that was cached as a result of a cache miss and
subsequently provided benefit during both a subsequent read
request and a subsequent write request.

A PrefetchUpdate state 357 corresponds to a block that
was cached as a result of a prefetch operation, has been
subsequently written to, and has not been subsequently read
as a result of a cache hit. A block with PrefetchUpdate state
357 indicates a block that was speculatively prefetched, but
provided marginal benefit for having been cached before a
subsequent write request.

A PrefetchUpdateHit state 358 corresponds to a block that
was cached as a result of a prefetch operation, has been
subsequently written to, and has been subsequently read as
a result of a cache hit. A block with PrefetchUpdateHit state
358 indicates a block that was speculatively prefetched and
provided benefit when handling both subsequent read and
write requests.

Referring back to FIG. 2 and process 240, in some
embodiments, when the written status value 310 and/or the
hit status value 330 are implemented using counters, the one
or more counters associated with the Hit state 352, the
PrefetchHit state 354, the WriteOnly state 355, the WriteHit
state 356, the PrefetchUpdate state 357, and/or the Prefetch-
UpdateHit state 358 may be incremented by the amount in
the corresponding written status value 310 counter and/or
the hit status value 330 counter. Incrementing by these larger

10

15

20

25

30

35

40

45

50

55

60

65

10

counter values may support improved measuring of how
each block state contributes to cache hit rates and cache
effectiveness.

In some embodiments the caching system maintains a
pool of free blocks that are kept free of cached data so that
the predetermined cache block limit is less than the total
cache block capacity of the memory in the caching system
that is reserved for cache blocks. The pool of free blocks
helps reduce caching delay as allocated blocks may be taken
from the pool of free blocks without waiting for the eviction
process to identify a next block to evict and the write back
operation on the block finish before storing newly cached
data to the block. Thus, when a cache block is allocated
during process 220 and/or 230, the eviction and/or write
back may begin and when the eviction and/or write back
completes, the memory occupied by the evicted block is
added to the pool of free blocks.

At a process 250, monitoring metrics are updated. The
cache controller may periodically update one or more moni-
toring metrics or statistics for the caching system. To avoid
introducing transient effects in the monitoring metrics
caused by short-term fluctuations in the use of the storage
system and the caching system, the monitoring metrics are
typically measured and/or collected at periodic time inter-
vals, often referred to as epochs. Epochs are typically of
longer duration than most storage operations so that the
averaging effects of monitoring over time provide a better
overall measure of the caching system. A typical epoch may
vary in length from 100 ms to several minutes or longer.

In some embodiments, when monitoring metrics are
derived from count values being maintained by the caching
system, the count values may be reset at the beginning of
each monitoring epoch and then read at the end of each
monitoring epoch. In some embodiments, the count values
may be kept in free running counters where a change in the
count value from the previous monitoring epoch is used to
determine a count value for the current epoch. For example,
the count values that are determined with each monitoring
epoch may correspond to the counts of each block state that
are updated when each block is evicted from the cache
during process 240.

In some embodiments, the monitoring metrics may be
shared. In some examples, the cache controller may transmit
one or more messages to an operator, a user, and/or a log
with some or all of the metric values. In some examples, the
cache controller may transmit the one or more messages to
another controller in the storage system that may use the
metrics to tune the behavior of the caching system and/or the
storage system.

In some embodiments, the monitoring metrics may also
be aggregated over multiple epochs. In some examples, a
sliding window with metric values from each of the last x
number of epochs may be retained with averages over the
last x epochs being determined. For example, x could be 4,
with 4 versions of each metric being retained. In some
examples, an exponential smoothing or other aggregating
approach may be used to retain partial metric information
over recent epochs without maintaining multiples of each
metric value.

FIG. 4 is a simplified diagram of an example process 250
of updating caching metrics according to some embodi-
ments. One or more of the processes 410-450 of process 250
may be implemented, at least in part, in the form of
executable code stored on non-transient, tangible, machine
readable media that when run by one or more processors
(e.g., the one or more processors in cache controller 140)
may cause the one or more processors to perform one or

US 9,471,510 B2

11

more of the processes 410-450. For example, process 250
may be implemented by cache controller 140 on behalf of
caching system 130 with process 250 being performed at
each monitoring epoch. In some embodiments, a subset of
the caching metrics may be updated based on the aspects of
the caching system that are to be monitored.

At a process 410, a cache space utilization may be
determined. As a caching system receives and processes
storage requests, an amount of space used by each of the
tenants in the caching system may ebb and flow based on the
patterns of usage in the storage requests. Each of the tenants
may correspond to either each of the storage units being
requested in the storage requests and/or each of the clients
making storage requests.

Cache space utilization for each of the tenants may be
determined by examining each of the CCBs present in the
caching system at any given time as each CCB corresponds
to a block that is stored in the memory of the caching system.
By examining the tenant information included in each of the
CCBs, a count of a number of blocks corresponding to each
tenant may be determined. In some embodiments, the count
for each tenant may be determined at the end of each
monitoring epoch by iterating through the CCBs and incre-
menting each corresponding count value based on the tenant
information. In some embodiments, the counts may be
maintained in real time by incrementing a corresponding
block count when a CCB is created during processes 220
and/or 230 and decrementing a corresponding block count
when a CCB is destroyed during process 240. In some
examples, the incrementing and decrementing may be
handled by the constructor and destructor, respectively, of a
CCB class. By comparing each count value to a total number
of'blocks that may be cached and/or a total number of blocks
that are currently being cached, the cache space utilization
for each tenant may be determined. The total of cache space
utilizations over all tenants is 100% or less and may be
adjusted to account for the size of the pool of free blocks.

The cache space utilization metrics may be used to
determine whether there is good balance in the use of the
caching system by the various tenants. When the cache
space utilization metrics for each of the tenants are relatively
similar, good balance between the tenants is being main-
tained. When the cache space utilization metrics for each
tenant are less similar, or the cache space utilization for one
or more of the tenants is significantly higher than the others,
an imbalance in cache usage across the tenants is present.
When an imbalance is detected the cache space utilizations
may be used to rearrange storage resources to achieve better
caching balance. In some examples, the cache space utili-
zation metrics may also be used to partition the caching
system so that different tenants are permitted to cache up to
a pre-assigned number of blocks.

At a process 420, prefetch effectiveness may be deter-
mined. The counters associated with Prefetch state 353,
PrefetchHit state 354, PrefetchUpdate state 357, and
PrefetchUpdateHit state 358 (the prefetch counters) may be
used to determine the effectiveness of the prefetch opera-
tions of the caching system. Prefetch effectiveness may be
determined on a per tenant basis and/or as a whole across the
entire caching system depending on whether prefetch coun-
ters for each tenant are maintained.

In some embodiments, the counter(s) associated with
Prefetch state 353 may be used to estimate how much
storage system resources are being wasted on prefetch
operations that result in no benefit to the storage system. In
some examples, each block that is prefetched and never
again used consumes both network bandwidth as well as

25

30

40

45

55

12

storage array and storage device bandwidth that could be
available for other storage system operations. In some
examples, speculatively caching these blocks results in more
block evictions and may also indirectly reduce the hit rate
for the caching system because delaying the eviction of
some blocks may result in more cache hits for those blocks.
A higher amount of wasted resources may suggest that the
number of blocks (i.e., the value of m) being speculatively
prefetched be reduced during process 230, whereas a lower
amount of wasted resources may suggest that the number of
blocks being speculatively prefetched be increased during
process 230.

In some embodiments, the counter(s) associated with
Prefetch state 353 may be compared to the other prefetch
counters to determine a prefetch hit rate. For example, the
prefetch hit rate may correspond to the ratio of the total of
PrefetchHit state 354, PrefetchUpdate state 357, and
PrefetchUpdateHit state 358 counters to the total of the
prefetch counters. A higher prefetch hit rate indicates a more
effective speculative caching approach. A lower prefetch hit
rate may suggest that the number of blocks (i.e., the value of
m) being speculatively prefetched be reduced during process
230, whereas a higher prefetch hit rate may suggest that the
number of blocks being speculatively prefetched be
increased during process 230.

At a process 430, caching effectiveness may be deter-
mined. The cache states of FIG. 3 may generally be divided
into three categories indicating how effectively the caching
system is caching blocks. Cache blocks that are evicted
when in the Fetch state 351 and the Prefetch state 353 are
ill-used blocks as they take up cache space, but do not
improve the hit rate. Cache blocks that are evicted when in
the Hit state 352, the Prefetch hit state 354, the WriteHit
state 356, the PrefetchUpdate state 357, and the Prefetch-
UpdateHit state 358 are well-used blocks as they contribute
to a higher hit rate. Cache blocks that are evicted when in the
WriteOnly state 355 may provide insight into the write cache
effectiveness. The counters associated with the ill-used,
well-used, and write-only blocks may be converted to ill-
used, well-used, and write-only caching shares by dividing
them by a total of all of the counters. The ill-used, well-used,
and write-only cache shares may be determined separately
for each tenant and/or as a whole across the entire caching
system depending on whether eviction counters for each
tenant are maintained.

In some embodiments, caching effectiveness may be
improved by shifting caching resources between tenants
based on the ill-used, well-used, and write-only cache
shares. In some examples, caching effectiveness may be
improved by shifting caching resources from tenants with a
higher ill-used cache share to tenants with a higher well-
used cache share, thus providing extra caching resources to
the tenants with higher hit rates who are more likely to
contribute storage system performance overall. Similarly,
caching effectiveness may be improved by shifting caching
resources from tenants with a higher write-only cache share
to tenants with a higher well-used cache share.

In some embodiments, when the written status value 310
is implemented using a counter, an average of the written
state values 310 across each of the evicted blocks may
provide insight into the write policy for each tenant or the
caching system as a whole. When the average is high, the
respective tenant or the caching system as a whole may be
better served using a write back caching policy where blocks
associated with write requests are written to the storage
array upon eviction. When the average is low and/or close to
one, a write through caching policy, where data written to

US 9,471,510 B2

13

the blocks is also written to the storage array with each write,
is less likely to consume excess storage system resources.

At a process 440, backend I/O bandwidth is determined.
Backend I/O bandwidth is a measure of how much data
traffic is being handled by each storage array and the storage
units in the storage array. Backend /O bandwidth may be
estimated by measuring the eviction rate for each storage
unit/tenant. By totaling the eviction counters for each tenant
and accounting for block size and epoch length, the backend
1/0 bandwidth may be determined. In some embodiments,
comparison of backend I/O bandwidth from each of the
tenants may support better load balancing among the storage
devices associated with each of the storage units as storage
units may be moved among the storage devices to better
distribute the backend 1/O bandwidth. In some embodi-
ments, moving storage units with higher backend I/O band-
widths to faster storage devices may also improve storage
system performance.

At a process 450, the caching system and/or storage
system configurations may be adjusted. Using the metrics
monitored during processes 410-450, the configurations of
the caching system and/or the storage system may be
adjusted to achieve better overall caching system and/or
storage system performance. In some embodiments, the
cache space utilization determined during process 410 may
be used to partition and/or adjust how caching resources are
made available to each of the tenants to adapt to imbalances
in the cache space utilization between the tenants. In some
embodiments, the prefetch effectiveness determined during
process 420 may be used to adjust the number of blocks
speculatively prefetched so that fewer storage system
resources are wasted prefetching blocks that are not
accessed again in the caching system before they are evicted.
In some embodiments, the caching effectiveness determined
during process 430 may be used to adjust how caching
resources are made available to each of the tenants by
moving caching resources to those tenants who are more
likely to derive a benefit from cached blocks. The caching
effectiveness may also be used to determine whether a write
through or a write back policy be used for each tenant. In
some embodiments, the backend I/O bandwidths determined
during process 440 may be used to move storage units
between storage devices so that storage units with higher
backend I/O bandwidths may be moved to storage devices
which are faster and/or have more bandwidth available.

Some examples of caching system 130 may include
non-transient, tangible, machine readable media that include
executable code that when run by one or more processors
may cause the one or more processors (e.g., the one or more
processors in cache controller 140) to perform the processes
of method 200 as described above. Some common forms of
machine readable media that may include the processes of
method 200 are, for example, floppy disk, flexible disk, hard
disk, magnetic tape, any other magnetic medium, CD-ROM,
any other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip or car-
tridge, and/or any other medium from which a processor or
computer is adapted to read.

Although illustrative embodiments have been shown and
described, a wide range of modification, change and substi-
tution is contemplated in the foregoing disclosure and in
some instances, some features of the embodiments may be
employed without a corresponding use of other features.
One of ordinary skill in the art would recognize many
variations, alternatives, and modifications. Thus, the scope
of the invention should be limited only by the following

10

15

20

25

30

35

40

45

50

55

60

65

14

claims, and it is appropriate that the claims be construed
broadly and in a manner consistent with the scope of the
embodiments disclosed herein.

What is claimed is:

1. A method comprising:

storing, by a cache controller, storage blocks in a cache

memory, each of the storage blocks being associated
with its own status indicators including a written status
indicator, a prefetched status indicator, and a hit status
indicator;

as requests are received at the cache controller:

processing the requests; and

updating the status indicators associated with the stor-
age blocks in response to the processing of the
requests;

selecting one of the storage blocks for eviction when a

storage block limit is reached;

as the selected storage block is evicted from the cache

memory, determining an eviction state of the selected
storage block based on values of the status indicators
associated with the selected storage block and updating
a selected one of a plurality of block counters, the
selected one of the block counters corresponding to the
eviction state; and

periodically updating caching statistics based on the block

counters.

2. The method of claim 1 wherein:

each of the storage blocks is associated with a tenant

identifier; and

the method further comprises updating the selected one of

the block counters further based on the tenant identifier
associated with the selected storage block.

3. The method of claim 1, further comprising

updating the written status indicator associated with the

storage blocks that are accessed by a write request.

4. The method of claim 3 wherein:

the written status indicator is a written counter; and

updating the written status indicator comprises increment-

ing the written counter.

5. The method of claim 1, further comprising

updating the hit status indicator associated with the stor-

age blocks that are accessed by a read request that
results in a cache hit.

6. The method of claim 5 wherein:

the hit status indicator is a read counter; and

updating the hit status indicator comprises incrementing

the read counter.

7. The method of claim 1 wherein:

each of the storage blocks is associated with tenant

information; and

selecting the selected one of the block counters is further

based on respective tenant information associated with
the selected storage block.

8. The method of claim 1 wherein:

each of the storage blocks is associated with tenant

information; and

the tenant information is a client identifier or a storage

unit identifier.

9. The method of claim 1 wherein updating the caching
statistics comprises determining a cache space utilization
based on a ratio of a number of the storage blocks that are
associated with each tenant stored in the cache memory and
a number of the storage blocks stored in the cache memory.

10. The method of claim 1 wherein updating the caching
statistics comprises determining a back end input output
bandwidth based on a total of the block counters.

US 9,471,510 B2

15

11. The method of claim 1 wherein:

processing the requests comprises:
fetching prefetched storage blocks based on the

requests; and
updating the prefetch status indicator associated with
the prefetched storage blocks.
12. A computing device comprising:
a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions for performing a method of caching; and
a processor coupled to the memory, the processor con-
figured to execute the machine executable code to
cause the processor to:
as storage requests are received to access cache blocks,
update status values associated with each of the
cache blocks accessed by the storage requests in
response to processing the storage requests, each of
the cache blocks having its own status values includ-
ing a written status value, a prefetched status value,
and a hit status value;

select one of the cache blocks for eviction when a cache
block limit is reached;

as the selected cache block is evicted from the memory,
determine an eviction state of the selected cache
block based on values of the status values associated
with the selected cache block and update a selected
one of a plurality of eviction counters, the selected
one of the eviction counters corresponding to the
eviction state; and

periodically update caching system metrics based on
the eviction counters.

13. The computing device of claim 12 wherein:

each of the cache blocks is associated with tenant infor-
mation; and

the processor is further configured to update the selected
one of the eviction counters based on the tenant infor-
mation associated with the selected cache block.

14. The computing device of claim 12, wherein the

processor is further configured to:

determine a cache effectiveness metric based on compari-
sons of one or more combinations of the eviction
counters; and

determine a prefetch effectiveness metric based on one or
more of the eviction counters associated with the
prefetch status value.

15. A method comprising:

processing, by a caching system, a plurality of storage
requests received by the caching system;

10

20

25

30

35

40

45

16

updating state variables for blocks of data that are
accessed by the storage requests, the state variables for
each of the blocks of data include a written state
variable, a prefetch state variable, and a hit state
variable;

as each block of data is evicted from the caching system,
determining an eviction state of the evicted block of
data based on values of the state variables associated
with the evicted block of data and updating a selected
one of a plurality of caching metrics, the selected one
of the caching metrics corresponding to the eviction
state; and

adjusting one or more characteristics of the caching
system based on the caching metrics.

16. The method of claim 15, further comprising aggre-

gating the caching metrics over multiple periods of time.

17. The method of claim 15 wherein:

generating the caching metrics comprises determining a
cache effectiveness metric based on comparisons of one
or more combinations of counters, each of the counters
being associated with at least one possible eviction
state; and

adjusting the one or more characteristics of the caching
system comprises shifting caching system resources to
tenants with a higher cache effectiveness metric.

18. The method of claim 15 wherein:

generating the caching metrics comprises determining a
prefetch effectiveness metric based on one or more of
the caching metrics associated with values of the
prefetch state variable; and

adjusting the one or more characteristics of the caching
system comprises adjusting a number of blocks specu-
latively fetched in response to a read request based on
the prefetch effectiveness metric.

19. The method of claim 15 wherein:

generating the caching metrics comprises determining a
cache space utilization metric based on a ratio of a
number of blocks of data stored in the caching system
that are associated with each tenant of the caching
system and a number of blocks of data stored in the
caching system; and

adjusting the one or more characteristics of the caching
system comprises limiting a number of blocks of data
that the caching system may be allowed to store for
each tenant of the caching system when the cache space
utilization metric shows an imbalance in cache system
use among tenants of the caching system.

#* #* #* #* #*

